Posted 7/22/2014 3:00 PM (GMT 0)
Binduspire,
Does your LLMD not teat children?
My daughter has congenital Lyme and she is 4. My LLMD treats her as well. Will his pediatrician test through IGeneX? It's the most reliable lab as you know. My daughter’s pediatrician (not LLMD) tested her through PacLab and it came back negative. Her pediatrician also did not believe it could be passed.
I finally took her to my LLMD for testing and she came back positive of course. I knew she would because of her health issues.
Unfortunately there are not a lot of articles about the actual passing on Lyme while in utero.
From http://www.aldf.com/Misinformation_about_Lyme_Disease.shtml
Several spirochetes have demonstrated the ability to cause transplacental infections in a variety of animals and in humans, especially the causative agent of syphilis (Trepanema pallidum) (1-7). Cases of congenital syphilis acquired from the mother are well documented and used to be relatively common. Although the Lyme disease bacteria (Borrelia burgdorferi) is also a spirochete, it differs from T. pallidum in several important ways including its genetics, transmission, clinical manifestations, and effects on the fetus. Unlike congenital syphilis, there is limited evidence that congenital Lyme disease occurs in humans.
Human pregnancy studies
Several published case series have assessed the relationship between Lyme disease in pregnant women and outcomes of the fetus. These included a retrospective investigation of 19 women with Lyme disease during pregnancy where infection with B. burgdorferi could not be directly implicated as the cause of any of the adverse outcomes that were noted (8). In a prospective report of 17 women who acquired Lyme disease during pregnancy, one woman had a spontaneous abortion with no evidence of an infection with B. burgdorferi on either stains or cultures of the fetal tissue, one woman had an infant with isolated syndactyly, and 15 women delivered normal infants with no clinical or serologic evidence of infection with B burgdorferi (9). A study of 105 women with erythema migrans during pregnancy found that 93 (88%) had healthy infants delivered at term, 6 (6%) delivered prematurely, and 2 (2%) had pregnancies that ended with a miscarriage (10). One of the preterm infants had cardiac abnormalities and 2 died shortly after birth. Four (4%) babies born at term had congenital anomalies, 1 with syndactyly and 3 with urologic abnormalities. Infection with B. burgdorferi could not be directly implicated as the cause of any of these adverse outcomes. The placentas were examined from 60 asymptomatic women who lived in an area endemic for Lyme disease and whose serology was either positive or equivocal for antibodies to B. burgdorferi (11). Three (5%) were found to contain spirochetes using Warthin-Starry silver stains while B. burgdorferi DNA was detected using PCR in 2 of the placentas that were tested, but all of these pregnancies had entirely normal outcomes. Finally, no association was found between exposure of 105 women to B. burgdorferi (either before conception or during pregnancy) and fetal death, prematurity, or congenital malformations (12).
[Note: This last sentence summarizes a study of 2,000 pregnant women of whom 15 had evidence of exposure to B. burgdorferi- either a past history of Lyme disease, seropositivity, or Lyme disease diagnosed during pregnancy]
Studies of children with possible congenital Lyme disease
Researchers compared 5,000 infants, half from an area in which Lyme disease was endemic and half as controls from an area without Lyme disease (13). They found no significant differences in the overall incidence of congenital malformations between the two groups. Although there was a statistically significant higher rate of cardiac malformations in the endemic area compared with the control area, there was no relationship between a cardiac malformation and either a clinical history or serologic evidence of Lyme disease.
No association was found between the presence of IgG antibodies to B. burgdorferi and congenital malformations in 421 infants whose cord blood was analyzed for B. burgdorferi antibody (14). In another study, of 12 infants born to women who were B. burgdorferi antibody positive at delivery, half had minor medical problems as neonates (15). Only one woman had a history consistent with Lyme disease during pregnancy and her infant had a ventricular septal defect. At follow-up evaluations approximately 9-17 months later, all of the children, except for the child with the cardiac defect, were entirely well, and none had serologic evidence of an infection with B. burgdorferi.
Transplacental transmission of B. burgdorferi in humans has been demonstrated in association with adverse fetal outcome in four case reports. The first report was of a 28-year old woman with untreated Lyme disease during the first trimester of pregnancy who gave birth at 35 weeks gestation to an infant with widespread cardiovascular abnormalities (16). This infant died during the first week of life and postmortem examination showed spirochetes morphologically compatible with B. burgdorferi in the infant's spleen, kidneys, and bone marrow, but not in the heart. In contrast to the mononuclear cell infiltrate and proliferation of fibroblasts usually seen with congenital syphilis (17), there was no evidence of inflammation, necrosis, or granuloma formation in this infant's heart or other organs. In a second report, a 24-year-old woman with untreated Lyme disease in the first trimester of pregnancy gave birth at term to a 2500-gram stillborn (18). B. burgdorferi was cultured from the liver, and spirochetes were seen in the heart, adrenal glands, liver, brain, and placenta with both immunofluorescent and silver stains. However, no evidence of inflammation was seen, and there were no abnormalities noted except for a small ventricular septal defect. The third report was a 37-year old woman who received penicillin orally for 1 week for erythema migrans during the first trimester of pregnancy and subsequently delivered a 3400-gram infant at term who died at 23 hours of age of what was believed to be "perinatal brain damage" (19). B. burgdorferi was identified in the newborn's brain using immunochromogenic staining with monoclonal antibodies. However, no significant inflammation or other abnormalities were found in any organ, including the brain, on postmortem examination. Finally, an otherwise healthy child who presented with multiple annular, erythematous lesions, fever, and generalized lymphadenopathy at 3 weeks of age, experienced these clinical findings recurrently throughout the first 3 years of life despite oral therapy with amoxicillin and josamycin (20). A skin biopsy revealed spirochetes by silver stain and was positive for B. burgdorferi by PCR assay. In addition, serologic studies were positive for infection with B. burgdorferi. The patient's mother had no history of either a tick bite or of Lyme disease, but she had been involved in outdoor activities in an endemic area and had a weakly positive serologic test for Lyme disease. No association between maternal Lyme disease and an adverse outcome of the pregnancy were described in several other case reports of pregnant women with either erythema migrans or neuroborreliosis who were treated with appropriate antimicrobial therapy at different stages of their pregnancy (21-24).
In a survey of neurologists in areas of the United States in which Lyme disease was endemic, none of the 162 pediatric and 37 adult neurologists who responded to the survey had ever seen a child whose mother had been diagnosed with Lyme disease during pregnancy (26). A retrospective case-control study was carried out in an area endemic for Lyme disease where 796 case children with congenital cardiac anomalies were compared with 704 control children without cardiac defects with respect to Lyme disease in their mothers either during or before the pregnancy (27). There was no association between congenital heart defects and either a tick bite or Lyme disease in the mothers either within 3 months of conception or during pregnancy.
In summary, even though Lyme disease is fairly common, there is little evidence that fetuses of pregnant women with Lyme disease are at increased risk of delivering a child either with congenital malformations or with congenital Lyme disease. Of course, if a pregnant woman develops Lyme disease, she should be treated appropriately, but she should also be reassured that there is little risk to her fetus.
References:
1. Ingall, D, Dobson, SRM, and Musher, D. Syphilis. In, Remington, JS, Klein, JD, eds.. Infectious Diseases of the fetus and the Newborn Infant. 3rd ed. W,B. Saunders, --367-394, 1990.
2. Fuchs, PC, and Oyama, AA. Neonatal relapsing fever due to transplacental transmission of Borrelia. JAMA 208: 690-692, 1969.
3. Soghlan, JD, and Bain, AD. Leptospirosis in human pregnancy followed by the death of the foetus. Br. Med. J. 1: 228-230, 1969.
4. Lindsay, S, and Luke, IW. Fatal leptospirosis (Weil's disease) in a newborn infant. J. Pediatr. 34: 90-94, 1949.
5. Steenbarger, JR. Congenital tick-borne relapsing fever: report of a case with first documentation of transplacental transmission. Birth Defects Orig.Artic. Ser. 18: 39-45, 1982.
6. Yagupsky, P. and Moss, S. Neonatal Borrelia species infection (relapsing fever). Amer. J. Dis. Child 139: 74-76, 1985.
7. Lane, RS, Burgdorfer, W., Hayes, SF, et al. Isolation of a spirochete from the soft tick, Ornithodoros coriaceus : a possible agent of epizootic bovine abortion. Science 230: 85-87, 1985.
8. Markowitz, LE, Steere, AC, Benach, JL, et al. Lyme disease during pregnancy. JAMA 255: 3394-3396, 1986.
9. Ciesielski CA, Russell H, Johnson S, et al. Prospective study of pregnancy outcome in women with Lyme disease. Abstract 39. Twenty-Seventh International Conference of Antimicrobial Agents and Chemotherapy., New York, 1987.
10. Maraspin, V, Cimperman, J, Loric-Furlan, S. et al. Erythema migrans in pregnancy. Wien Klin. Wochenschr. 111: 933-940, 1999.
11. Figueroa, R., Bracero, LA, Aguero-Rosenfeld, M, et al. Confirmation of Borrelia burgdorferi spirochetes by polymerase chain reaction in placentas of women with reactive serology for Lyme antibodies. Gynecol. Obstet. Invest. 41: 240-243, 1996.
12. Strobino BA, Williams CL, Abid S, et al. Lyme disease and pregnancy outcome: a prospective study of two thousand prenatal patients. Am J Obstet Gynecol 169: 367-74, 1993
13. Williams, CL, Strobino, B, Weinstein, A., et al. Maternal Lyme disease and congenital malformations: a cord blood serosurvey in endemic and control areas. Paediatr. Perinat. Epidemiol. 9: 320-330, 1995.
14. Williams, CL, Benach, JL, Curran, AS, et al. Lyme disese during pregnancy: a blood cord serosurvey. Ann. NY Acad. Sci. 539: 504-506, 1988.
15. Nadal, D., Hunziker, UA, Bucher, HU, et al. Infants born to mothers with antibodies against Borrelia burgdorferi at delivery. Eur. J. Pediatr. 148: 426-427, 1989.
16. Schlesinger, PA, Duray, PH, Burke, BA, et al. Maternal-fetal transmission of the Lyme disease spirochete, Borrelia burgdorferi. Ann. Intern. Med. 103: 67-68, 1985.
17. Oppenheimer, EH, and Hardy, JB. Congenital syphilis in the newborn infant: clinical and pathological observations in recent cases. Johns Hopkins Med. J. 129: 63-82, 1971.
18. MacDonald, AB, Benach, JL, and Burgdorfer, W. Still birth following maternal Lyme disease. NY State Med. J. 87: 615-616, 1987.
19. Weber, K, Bratzke, HJ, Neubert, U, et al. Borrelia burgdorferi in a newborn despite oral penicillin for Lyme borreliosis during pregnancy. Pediatr. Infect. Dis. J. 7: 286-289, 1988.
20. Trevisan, G., Stinco, G, and Cinco, M. Neonatal skin lesions due to spirochetal infection: a case of congenital Lyme borreliosis? Intl. J. Dematol. 36: 677-680, 1997.
21. Grandsaerd, MJ. Lyme borreliosis as a cause of facial palsy during pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 91: 99-100, 2000.
22. Mikkelson, AL, and Palle, C. Lyme disease during pregnancy. Acta Obstet. Gynecol. Scand. 6: 477-478, 1987.
23. Schaumann, R. Facial palsy caused by Borrelia infection in a twin pregnancy in an area of nonendemicity. Clin. Infect. Dis. 29: 955-956, 1999.
24. Scutzer, SE, Janniger, CK, and Schwartz, RA. Lyme disease during pregnancy. Cutis. 47: 267-268, 1991.
25. Stiernstedt, G. Lyme borreliosis during pregnancy. Scan. J. Infect. Dis. (suppl) 71: 99-100, 1990.
26. Gerber, MA, and Zalneraitis, EL. Childhood neurologic disorders and Lyme disease during pregnancy. Pediatr. Neurol. 11: 41-43, 1994.
27. Strobino, B, Abid, S, and Gewitz, M. Maternal Lyme disease and congenital heart disease: a case-control study in an endemic area. Amer. J. Obstet. Gynecol. 180: 711-716, 1999.