Posted 10/30/2014 9:17 PM (GMT 0)
Our daughter is also heterozygous for A1298C. Our LLMD prescribed methyl B12, Methylfolate and P-5-P.
Here is a good explanation of the defect:
http://survivingmthfr.blogspot.ca/2012/06/mthfr-a1298c-polymorphism_04.html
"MTHFR A1298C Polymorphism
A1298C single nucleotide polymorphism (SNP) affects the enzyme known as
5,10 MethyleneTetraHydroFolate Reductase (MTHFR). This polymorphism
involves a down regulation of the MTHFR enzyme, responsible for the
backwards reaction of the folate cycle, where 5-methylfolate (5MTHF) is
converted into tetrahydrofolate (THF). This reaction is most important for the
production of BH4 – tetrahydrobiopterin. Each turn of the folate cycle and
conversion of 5MTHF to THF produces 1 molecule of BH4. In heterozygous
and homozygous states, enzyme activity will be compromised by
approximately 30% and 70% respectively.
Functions of BH4
• Cofactor for all three isotypes of nitric oxide synthases (nNOS, eNOS,
iNOS). NOS is essential for the conversion of arginine to Nitric Oxide
(NO) and Citrulline in the Urea Cycle. 2 BH4 molecules are required to
drive the Urea Cycle efficiently and produce Citrulline and NO. 1 BH4
molecule will result in the generation of peroxynitrite, and no BH4
results in superoxide formation.
• Detoxification of ammonia – BH4 is required to convert ammonia to
urea in the Urea cycle. This is a priority function of BH4.
• BH4 is the rate limiting factor in the production of neurotransmitters –
Indolamines: Serotonin and Melatonin; and Catecholamines:
Dopamine, Noradrenalin, Adrenalin. BH4 activates enzymes tyrosine
hydroxylase and tryptophan hydroxylase in the synthesis of these
monoamines. When BH4 is limited in supply these enzymes cannot
bind to their amino acid substrates, tyrosine and tryptophan, which
are the precursors for these monoamines.
• Cofactor for Phenylalanine hydroxylase in the conversion of
Phenylalanine to tyrosine.
Consequences of Low BH4
• High levels of ammonia – exacerbated by CBS/NOS SNPs.
• High levels reactive oxygen species – superoxide. High levels of
reactive nitrogen species – peroxynitrite. These dangerous free
radicals trigger microglial activation, increased NMDA receptor
stimulation, excessive glutamate production and eventually neuronal
degeneration.
• Low levels of all monoamines – depending on COMT/VDRtaq SNPs.
• Decreased production of glutathione.
• High Phenylalanine levels result in low serotonin and GABA.
• When BH4 supply is limited the body will prioritize detoxification of
excess ammonia above production of neurotransmitters.
• Excessive production of excitotoxins – glutamate, quinolinic acid and
arachidonic acid. Quinolinic acid is associated with higher incidence of seizures.
Associated Conditions
• Chronic Fatigue Syndrome/ME
• Fibromyalgia
• Multiple Chemical Sensitivity (MCS)
• Insomnia
• Depression
• Autism Spectrum Disorders
• Neuro-immune disorders
• Raynaud’s
• Migraine
• Seizures
• Parkinson’s disease
• IBS, IBD, peptic ulcers, increased susceptibility to parasitic infections,
low gut butyrate
• Anxiety/Panic disorder
• Ammonia toxicity symptoms – brain fog, spacy, language issues,
fatigue, poor concentration, dark circles under eyes, poor
learning/memory, headaches, stimulating behaviours, food
intolerances (especially protein).
Treatment Aims
1. Support Ammonia detoxification
2. Antioxidant support to reduce peroxynitrite and superoxide
3. Increase BH4 production
4. Neurotransmitter Support
Considerations for Nutritional Bypasses
• Ascorbic acid (Vitamin C) neutralizes Superoxide.
• 5MTHF (activated folic acid) neutralizes peroxynitrite and is a cofactor
for BH4 production.
• BH4 support – BH4, 5MTHF, NADH, Royal Jelly, Lithium Orotate.
• Hydroxycobalamin – reduces NO.
• NADH is a cofactor for DHPR, the enzyme responsible for conversion
of BH2 to BH4. This enzyme is inhibited by Aluminium, Lead and
A1298C.
• Ammonia control – glutamine, NADH, weekly charcoal/mag citrate
flushes, Yucca, arabinogalactans, sodium/potassium butyrate.
• Neurotransmitter support – tryptophan, 5HTP, tyrosine, ginkgo biloba,
P5P, B3.
• Methyl or hydroxycobalamin (depends on COMT/VDRtaq SNPs) to be
introduced prior to 5MTHF supplementation to prevent methyl
trapping.
• OPC’s – oligomeric proanthocyanidins – anti-oxidant, neutralizes
peroxynitrite and superoxide, regulates glutamate:GABA.
Neutralizing free radical production will prevent ongoing microglial activation,
NMDA receptor stimulation and subsequent excessive production of
excitotoxins like glutamate. Clearing high levels of ammonia from the body
will surely make the patient feel better relatively quickly, and will also remove
some of the strain on BH4’s role in clearing ammonia. The more BH4 is
available for neurotransmitter production, the better the patient will feel in the
long run."